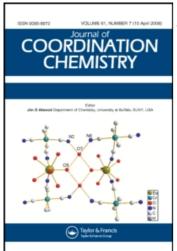
This article was downloaded by:


On: 24 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

A REINVESTIGATION OF THE ACTION OF NITRIC OXIDE ON DIMETHYLZINC AND DIMETHYLCADMIUM

Ian S. Butler^a; M. Louisa Newbury^a

^a Department of Chemistry, McGill University, Montreal, Quebec, Canada

To cite this Article Butler, Ian S. and Newbury, M. Louisa(1976) 'A REINVESTIGATION OF THE ACTION OF NITRIC OXIDE ON DIMETHYLZINC AND DIMETHYLCADMIUM', Journal of Coordination Chemistry, 5: 4, 195 — 200

To link to this Article: DOI: 10.1080/00958977608073011

URL: http://dx.doi.org/10.1080/00958977608073011

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A REINVESTIGATION OF THE ACTION OF NITRIC OXIDE ON DIMETHYLZINC AND DIMETHYLCADMIUM¹

IAN S. BUTLER and M. LOUISA NEWBURY

Department of Chemistry, McGill University, P.O. Box 6070, Station A, Montreal, Quebec, Canada H3C 3G1

(Received September 4, 1975; in final form October 23, 1975)

The reactions of the dimethylmetals, Me_2M (M = Zn, Cd), with nitric oxide have been reinvestigated. Two moles of NO are taken up per mole of dimethylmetal in each case. Infrared, laser Raman and mass spectral data indicate that the $Me_2M.2NO$ adducts are best formulated as MeM[O.N(NO)Me] rather than $Me_2M.M[O.N(NO)Me]_2$ as had been suggested earlier. On hydrolysis, the methyl(N-methyl-N-nitrosohydroxylamine) metal(II) complexes apparently disproportionate to yield $M[O.N(NO)Me]_2$ and $M(OH)_2$.

INTRODUCTION

While the reactions of transition metal compounds with nitric oxide have been widely studied, 2 similar reactions of non-transition metal compounds have received relatively little attention. In 1857, Frankland claimed³ that the dialkylzinc compounds, R₂Zn (R = Me, Et), reacted with NO to form products which he formulated as $R_2Zn.Zn[O.N(NO)R]_2$. Moreover, he also reported that these products gave Zn[O.N(NO)R] 2 on hydrolysis. No further research was carried out in this area until 1962 when Abraham et al.4 reported briefly on their study of the analogous reactions of Pr₂ⁿZn and Me₂Cd with NO. Their work revealed that two moles of NO were absorbed per mole of dialkylmetal and they proposed that the initial product in the case of Pr₂ⁿZn was $Pr^n Zn[O.N(NO)Pr^n]$ rather than $Pr_2^n Zn. Zn [O.N(NO)Pr^n]_2$ as would have been expected on the basis of Frankland's earlier study. The subsequent hydrolysis product was formulated as $Zn[O.N(NO)Pr^n]_2$. Abraham et al. did not discuss the nature of the initial product in the Me₂Cd reaction, but they considered the hydrolysis product to be Cd[O.N(NO)Me]₂. These authors mentioned that nmr data were supportive of the proposed structures, as was the absence of any $\nu(NO)$ absorptions in the 2000-1500 cm⁻¹ region of the ir spectra of the zinc products. However, the complete details of their investigation have never been published.

As part of a broad study on the addition chemistry of the Group IIA organometals, we have now reinvestigated the reactions of Me₂Zn and Me₂Cd with NO and have used various spectroscopic techniques in order to establish the structures of the reaction products more definitively.

EXPERIMENTAL

The chemicals were obtained from the sources indicated: Me₂Zn and Me₂Cd (Alfa Inorganics, Inc.), NO (Matheson of Canada, Ltd.), spectrograde cyclohexane (Fisher Scientific Co.).

Infrared and Raman spectra were recorded as described previously. Mass spectra were obtained on an AEI Model MS902 spectrometer operating at 70 eV. Unless otherwise noted, elemental analyses were performed on a Hewlett-Packard Model 185 CHN Analyzer. Decomposition points were measured on a Gallenkamp melting point apparatus.

Since both Me₂Zn and Me₂Cd are volatile, toxic, air- and moisture-sensitive liquids, they had to be handled either by vacuum line techniques or under a dry, oxygen-free nitrogen atmosphere. All apparatus and solvents were purged repeatedly by vacuum/gaseous nitrogen cycles before use. The nitrogen gas was purified by passage first through a column of molecular sieves (Linde 5A), then through a column of heated copper turnings to remove any oxygen and finally through another column of molecular sieves.

For transfer of the dimethylmetals from the shipping ampoules to the storage vessels (which were fitted with Teflon "Rotaflo" valves), a well-purged, nitrogenfilled dry box (Fisher Vacutrol) was used.

Reactions of Me₂Zn and Me₂Cd with NO

One typical reaction will be described in detail. The reaction vessel was a double Schlenk tube (DST) fitted with a fine, fritted glass disk for the purposes of filtration and product washing.

Cyclohexane (10 ml) was frozen (-196°) in the left leg of the DST and Me₂Zn (0.125 ml, 1.82 mmole) was condensed onto the solid cyclohexane. The mixture was then warmed briefly to room temperature and quickly cooled to -78° . The vacuum line, Hg manometer⁶ and tubing leading to the NO cylinder were evacuated and NO gas was admitted to the line. Then, NO gas (~4.6 mmole) was condensed at -196° into the left leg of the DST. After warming up to room temperature, the reaction mixture was stirred magnetically. Any excess NO gas remaining in the vacuum system was condensed out in a -196° trap. After 1 hr, the reaction mixture was cooled to -78° and the DST was opened to the vacuum line so that any condensables (e.g., unreacted NO) could be trapped out at -196° . The reaction mixture was again allowed to return to room temperature and the DST was disconnected from the vacuum line and transferred to a nitrogen-filled dry box. The DST was then tilted so that the reaction mixture was filtered from the left leg through the fritted glass disk into the right leg. The white precipitate which remained on the filter was washed with cyclohexane (7 ml). The filtrates were discarded and the DST was reconnected to the vacuum line and the precipitate was dried under vacuum (0.05 torr/ 25°). After drying, the precipitate was transferred to a dried sample vial and stored in a nitrogen-filled glove bag. The manometer measurements taken before and after the reaction indicated that 2.05 moles of NO were taken up per mole of Me₂Zn. Anal. (Daessle Microanalyses, Montreal, Quebec, Canada). Calcd for $C_2H_6N_2O_2Zn$: C, 15.5; H, 3.9; N, 18.0. Found: C, 15.6; H, 4.0; N, 18.7. Molecular weight: calcd, 154; found, 154 (mass spectrum). Yield: 0.212 g, 75%. The compound underwent hydrolysis when left overnight in a sealed desiccator containing a small dish of

The reaction of Me₂Cd with NO was carried out under identical conditions to those described above. The manometer measurements indicated that 1.96 moles of NO were absorbed per mole of Me₂Cd.

Anal. Calcd for C₂H₆N₂O₂Cd: C, 11.9; H, 2.3; N, 13.9. Found: C, 11.1; H, 2.8; N, 13.8. Molecular weight: calcd, 202; found, 202 (mass spectrum). Yield: 0.168 g, 59%. The compound also underwent hydrolysis when treated as described above. Analytical and mass spectral data (vide infra) suggested that the hydrolysis product was a 1:1 mixture of Me₂Cd(NO)₄ and Cd(OH)₂. Anal. Calcd for C₂H₈N₄O₆Cd₂: C, 5.9; H, 2.0; N, 13.7. Found for samples from two different preparations: C, 6.0, 5.6; H, 1.8, 2.0; N, 13.9, 13.6. Molecular weight: calcd for C₂H₆N₄O₄Cd, 262; found, 262 (mass spectrum).

Both the initial and hydrolyzed products are fine, white powders which do not melt sharply but decompose gradually to gold-coloured materials (>100° for the initial zinc product, >130° for the initial cadmium product and >200° for the hydrolyzed products). When freshly prepared, the initial products dissolve in dry, oxygen-free benzene, but not to concentrations sufficient to obtain nmr spectra. Moreover, soon after dissolution, fine, white precipitates (presumably decomposition products) appear. The materials obtained on hydrolysis of the initial products are insoluble in water and all common organic solvents.

RESULTS AND DISCUSSION

Characterization of the Products Formed in the Reactions of Me_2M (Me = Zn, Cd) with NO

1. Initial products Both Me₂ Zn and Me₂ Cd readily absorb two moles of NO per mole of dialkylmetal on reaction with NO and the analytical and mass spectral data for the initial products are consistent with the formation of the 1:2 adducts, Me₂M.2NO. This means that Frankland's formulation³ of the initial product in the Me₂ Zn reaction as Me₂Zn.Zn[O.N(NO)Me]₂ must be wrong, although he did have the correct Me₂ Zn:NO ratio. In their work on the reaction of Me₂Cd with NO, Abraham et al. 4 did not discuss the stoichiometry of the initial product formed. However, on the basis of their investigation of the reactions of several organometallic compounds with NO, they formulated the initial product in the case of $Pr_2^n Zn$ as $Pr^n Zn[O.N(NO)Pr^n]$, i.e., $Pr_2^n Zn.2NO$.

The major fragments observed in the mass spectra of the Me₂M.2NO adducts are listed in Table I. Since both zinc and cadmium poses several stable isotopes, the metal-containing fragments are readily identified. The parent molecular ions are observed for both com-

TABLE I. Principal fragments in the mass spectra of the initial and hydrolyzed products of the reactions of Me, M (M = Zn, Cd) with NO^{a}

Initial Products					Hydrolyze			
^{6 4} Zn	Compound Rel. Abund.	112Cd Compound		^{6 4} Zn Compound		^{1 1 2} Cd Compound		
m/e		m/e	Rel. Abund.	m/e	Rel. Abund.	m/e	Rel. Abund.	Proposed Positive Ion Fragments
				214	vw	262	vw	(CH ₃) ₂ M(NO) ₄ ⁺
		239	vw					CH ₃ M ₂ ⁺
				184	100	232	70	$(CH_3)M(NO)_3^+$
203	vw							$CH_{3}M_{2}^{2}(NO)_{2}^{+}$
154	0.1	202	vw	154	vw	202	vw	$(CH_3)_2M(NO)_2^+$
139	0.2	187	vw	139	80	187	50	$CH_{\bullet}M(NO)_{\bullet}^{+}$
124	44	172	0.5	124	40	172	5	$M(NO)^{+}$
109	0.3	157	0.1	109	60	157	50	CH ₃ M(NO) ⁺
108	0.1							CH ₂ M(NO)+
94	12	142	38	94	10	142	30	M(NO)+
79	100	127	100	79	50	127	50	CH ₃ M ⁺
64	16	112	59	64	30	112	100	M +

^aThe spectra were all recorded at $\sim 150^\circ$. The intensity of the strongest peak in each spectrum has been arbitrarily set to 100.

pounds, but with extremely low intensities. The base peak in both cases is the CH₃M⁺ fragment strongly suggesting that at least one methyl group is coordinated to the metals in the parent molecules. The peaks at m/e P-15 and P-45 can best be attributed, therefore, to CH₃M(NO)₂⁺ and CH₃M(NO)⁺, respectively. This in turn suggests that at least one nitrosyl group must be bonded directly to the metals. There are also a series of low intensity, high molecular weight fragments appearing in both spectra which we attribute to metal-metal bonded species (e.g., Cd-CdCH₃) formed by rearrangements occurring within the mass spectrometer. On the basis of the mass spectral evidence, therefore, it seems reasonable to formulate the Me₂ M.2NO adducts as MeM(NO)₂ Me, where the nature of the bonding in the M(NO)₂ Me moiety remains to be established.

The ir and Raman spectra of the two adducts (Table II) are very similar with most of the peaks in the spectra of the cadmium product occurring at slightly lower energies than those of the zinc compound. Many of the bands appear in both the ir and the Raman with approximately the same relative intensities.

In the C-H stretching region, there are bands attributable to both M-CH₃ and N-CH₃ vibrations. The former are close in frequency and relative intensity to those for the liquid dimethylmetals. There are no bands in the 2000-1500 cm⁻¹ region characteristic of coordinated terminal nitrosyl groups, but the bands at ~1385 cm⁻¹ can be assigned

to $\nu(N=0)$ vibrations by comparison with the spectra of nitrosoamines (R₂-N-N=0).8 In addition, we have attributed the strong bands in the spectra of the adducts at ~ 1065 cm⁻¹ to ν (N-N) because those of nitrosoamines⁸ and the hyponitrite ion $[(O-N-N-O)^2]^9$ fall in the 1110-1050 cm⁻¹ range. In the Raman, the $\nu(M-C)$ modes of organometallic compounds are usually the most intense bands observed in the low frequency region. 7,10 Consequently, we have attributed the very strong Raman bands at 546 (Zn product) and 480 cm⁻¹ (Cd product) to $\nu(M-C)$ vibrations. That there is only one v(M-C) band for each compound suggests that there is only one methyl group bonded directly to the metals because from our work on the Me₂ M.L-L adducts of the dimethylmetals with bidentate ligands $(L-L)^{11}$ two very strong Raman-active $\nu(M-C)$ bands are always observed.

The vibrational data together with the mass spectral evidence discussed earlier indicate that the Me₂M.2NO adducts can best be formulated as MeM[O.N(NO)Me] (I), i.e., similar to the PrⁿZn[O.N(NO)Prⁿ] formula proposed by Abraham et al.⁴ for the initial product in the reaction of Prⁿ₂Zn with NO. All the vibrational assignments given in Table II, therefore, are based on the MeM[O.N(NO)Me] formulation and have been made by comparison with the spectra of nitrosoamines⁸ and the tetrameric (MeMOMe)₄ species.¹²

In their communication, Abraham et al.⁴ suggested that $Pr^n Zn[O.N(NO)Pr^n]$ was formed by a mech-

TABLE II. Vibrational spectra (cm $^{-1}$) of the initial and hydrolyzed products of the reactions of Me $_2$ M (M = Zn, Cd) with NO

Initial Products								
Zinc compd.		Cadmium compd.		Zinc compd.		Cadmium compd.		Proposed
Infrared ^a	Raman ^b	Infrared ^a	Raman ^b	Infrareda	Raman ^b	Infrared ^a	Raman ^b	vibrational assignments
3045 m	3044 m	3037 vw	3040 m		3041 m	3400 vs	3052 w)	ν(O-H) [Cd(OH) ₂]
	3026 w 3012 w	3010 vw	3012 w		3027 m		3020 s 3001 m	ν (C-H) (N-CH ₃)
2954 s	2962 s 2951 m 2942 s	2960 s	2957 vs)	ν(C-H) (M-CH ₃)
2912 m	2913 s	2913 s	2912 vs				20.60 - 1	
		2882 vw			2962 vs		2960 s 2932 m	
2847 m	2849 m,br	2842 m	2848 w 2841 sh		2815 vw		<u>2820 w</u>	2 x δ(CH ₃)(~1430)
1477 m 1431 m	1481 w 1430 w	1463 m 1427 m	1467 w 1426 w	1469 w	1428 w,sh	1440 w.br	1473 vw, 1443 w	δr $\delta (CH_3)$
1414 s	1415 s	1405 s	1405 s	1415 m	1414 m	1415 m	1403 m)-(,)
1392 s	1387 s	1383 m	1378 s	1375 s	1380 s,br	1359 s	1377 vs 1362 w,s	h $\nu(N=0)$
1296 s,br	1300 m ,br	1293 s,br	1294 m	1300 s	1306 s	1281 s	1286 s	
1267 s} 1243 s}	1172 w)	1212 s 1190 s	1190 m	1233 s	1219 w	1240 s	1230 m	$\delta(N-CH_3)$
1150 w	1159 vs 1155 w,sh	1131 w	1153 w } 1128 vs }					$\delta(M-CH_3)$
l 118 w		1114 w			1133 vw		1066 ->	
1064 s	1070 s	1058 m	1061 s	1068 m 993 m)	1071 m 1062 m	1058 w	1066 s } 1056 s }	$\nu(N-N)$
970 s	976 m	954 s	966 m	958 s 938 s	952 m	958 m,br 935 s	950 s 940 m}	ν(C-N)
956 s	969 s	938 sh	955 m	838 m		921 s 849 m		ν(O-NO)
707 s	713 m	710 m	710 m	704 s	711 s	702 m }	712 m } 695 m }	$\delta(N-N=0)$
679 w,sh \ 664 m,br \ 590 w, sh \ 581 m	669 vw,br 594 w	672 sh 651 s,br	655 vw					(M-CH ₃)rock
576 w,sh	568 w	558 w } 545 m }	543 w 533 w	567 s	564 w,sh	567 w	564 w,b	r
542 m	546 vs 540 w,sh	478 m	480 vs		ŕ		ŕ	ν(M-C)
	- · · · · · · · · · · · · · · · · · · ·			553 m	553 s	495 w	512 s 501 w	
430 w	443 w	416 w	429 w	447 w	427 vw 378 vw	433 w 399 w	301 #	
	305 m		301 w				293 w 271 w	
	273 s 244 m		232 m		270 s		228 w	ν(M-O)
					226 m			
			218 m					
	155 w 124 w 89 s,br 65 w 56 w 51 w		104 s,br 80 s 66 s 54 m 43 w		140 m 107 m 77 w,sh 64 s		190 m 170 m 136 w 103 vw 86 s 65 s	δ(C-M-O), δ(O-M-O) an lattice modes
	56 w						86 s	δ(O-N

^aIn hexachlorobutadiene mull (4000–1350 cm⁻¹ region) and Nujol mull (1350–400 cm⁻¹ region).

^bFor powdered solid in capillary tube at room temperature using 514.5 nm Ar⁺ laser excitation. Note that the observed frequencies have been divided into three sections and the intensities given are relative to the strongest peak within each section.

anism involving initially O-coordination of one NO molecule to Pr_2^nZn , followed by a 1,3-shift of a methyl group and attachment of the second NO molecule to the N atom of the first one. However, in view of the known preference of N-coordination of NO molecules to metals, we favour the mechanism shown in eq. 1 for the formation of the methyl(N-methyl-N-nitrosohydroxylamine)metal(II) complexes.

$$Me-M-O-N No$$
(I) $M = Zn, Cd$

2. Hydrolysis products Both the zinc and cadmium products formed on hydrolysis of the MeM[O.N(NO)Me] compounds exhibit similar fragmentation patterns in their mass spectra (Table I). The highest molecular weight, metal-containing ions correspond to the Me₂ M(NO)₄ species. The mass spectra show peaks due to the loss of CH₃ and NO groups and the fragmentation patterns are consistent with M[O.N(NO)Me]₂ formulae proposed earlier by Frankland³ and Abraham et al.⁴ Analytical data for the freshly prepared cadmium product agree with the HOCd [O.N(NO)Me] 2 formulation rather than Cd[O.N(NO)Me] 2. However, it occurred to us that HOCd[O.N(NO)Me]₂ has the same stoichiometry as a 1:1 mixture of Cd[O.N(NO)Me]₂ and Cd(OH)₂ and we believe that the initial MeM[O.N(NO)Me] products disproportionate upon hydrolysis according to eq. 2.

$$2MeM[O.N(NO)Me] + H2O \longrightarrow M[O.N(NO)Me]2 + M(OH)2 (2)$$

All our efforts to separate the two cadmium products

were unsuccessful. The M[O.N(NO)Me] $_2$ compounds do not sublime and are insoluble in water and all common organic solvents thus precluding any nmr measurements. The comment concerning nmr data in the preliminary communication of Abraham et al. 4 presumably referred to the Pr_2^nZn products rather than the Me₂ Cd ones.

Infrared and Raman data for the two hydrolyzed products are given in Table II. As expected in view of the similar groupings involved, the spectra are quite similar to those of the initial products. Again, there is no evidence of coordinated nitrosyl groups, but bands due to $\nu(N=0)$ and $\nu(N-N)$ are clearly discernible. Moreover, as expected, the intense Raman bands attributed to the $\nu(M-C)$ modes in the spectra of the initial products are completely absent in the spectra of the hydrolysis products.

CONCLUSIONS

This study has verified that the initial products in the reactions of Me₂M (M=Zn, Cd) with NO have the formula, MeM[O.N(NO)Me]₂. There is no evidence of terminal nitrosyl groups being bonded directly to the metals. Analytical, vibrational and mass spectral data suggest that the MeM[O.N(NO)Me] species hydrolyse to form M[O.N(NO)Me]₂ and M(OH)₂.

ACKNOWLEDGMENTS

This research was supported by the National Research Council of Canada and, in part, by the Quebec Department of Education. We thank Professors T. H. Chan and P. G. Farrell of our department for valuable discussion.

REFERENCES

- Taken in part from the M.Sc. thesis of M.L.N., McGill University, Montreal, Quebec, Canada, 1974.
- For example, see W. P. Griffith, Adv. Organometal. Chem., 7, 211 (1968).
- 3. E. Frankland, Phil. Trans., 147, 63 (1857).
- 4. M. H. Abraham, J. H. N. Garland, J. A. Hill and L. F. Larkworthy, *Chem. and Ind.*, 1615 (1962).
- I. S. Butler and C. F. Shaw III, J. Raman Spectrosc., 3, 65 (1975).
- Since both Me₂Zn and Me₂Cd undergo metal exchange with elemental mercury, the Hg manometer was never exposed to the liquid dimethylmetals and traces of the compounds were never pumped through the Hg diffusion pump.
- J. L. Durig and S. C. Brown, J. Mol. Spectrosc., 45, 338 (1973) and reference cited therein.
- 8. L. J. Bellamy, "The Infrared Spectra of Complex Mole-

- cules", 2nd ed., Methuen and Co., London, 1958, Chapter 17.
- 9. K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds", 2nd ed., Wiley Interscience, New York, 1970, p. 104.
- 10. D. M. Adams and A. Squire, J. Chem. Soc. A, 814 (1970).
 11. I. S. Butler and M. L. Newbury, to be published.
 12. G. E. Coates and D. Ridley, J. Chem. Soc., 1870 (1965).